
 Technical Note
Document Number TNAU0031
Title ADL Advanced Communications Setup
Revision Date Prepared By Approved By
Draft 21/01/03 Andrew Naumann Keith Turner

Introduction
The MoTeC ADL is capable of receiving data from another device – such as an ECU – in both RS232 and CAN
formats. Motec has written a number of serial and CAN templates to simplify the setup for receiving data from
another device by the ADL. The devices available can be seen by choosing the ‘Select’ option from the ‘Inputs -
Communications’ screen under either RS232 or CAN1 – 6.

In other cases it may be necessary to change the communications settings, configure a CAN device etc. This
document describes the parameters used for configuring the ADL that are found under the ‘Advanced’ setup
screen for communications settings. While there are differences between RS232 and CAN, the use and
definitions of the parameters are the same.

Note that it is usually not possible to define a template for an RS232 datastream that is not on the list. Whilst the
format of CAN data is generally well defined, the coding of RS232 data is device dependant and a new template
must be developed on a device by device basis by Motec. This can be a fairly involved process and costs may be
incurred by the customer requesting a new or custom RS232 template.

Information on using a RTC to transmit additional serial data to an ADL by converting it to CAN data can be
found in document “TNAU0035 RTC Serial Port”.

Overview
There are a number of controllers and measuring devices that transmit serial data, often as RS232, but also as
CAN data. The ADL has a built in serial port on which it can receive RS232 data.1 The ADL can receive (or
transmit) on up to 6 CAN base addresses. This can be from one or more other devices depending on how many
base addresses each device uses for transmission – or if the ADL is transmitting to another device itself.

This document will focus on the use of the ADL for receiving CAN data. The Advanced comms screen is
divided into 2 sections, ‘Parameters’ for the overall settings, and ‘Received Channels’.

Contents:
Introduction ..1
Parameters ...2
Received Channels – Single Message...3
Received Channels – Compound Message ..4
Compound Messaging and Alignment ..4
Change Comms Channel...6
Comms Error Codes ...8
Unload comms errors:..8
Appendix A – Bitwise AND Operation...9
Appendix B – 2’s Complement Numbering..9
Appendix C – Bits and Bytes ...9
Appendix D - Decimal Binary Hexadecimal Conversion..10

1 An external RTC with its own serial port can be used to add another serial data device by converting RS232 to
CAN data.

TNAU0031 Page 2 of 10

Parameters

Fig 1: Advanced CAN comms parameters with the BR2 template selected

Device:
This tells the ADL what the format of the incoming data is. Ie: information about the data packet format.
Different devices have different headers, checksums and other characters of varying lengths to describe and
identify the data stream. For a ‘new’ CAN template a ‘Received Message’ device can be selected when reading
data into the ADL.

Format:
The most common format for CAN data is fixed binary with the length of each channel specified under
'Received Channels'. This tells us that each packet will be of a fixed number of bytes (not specified here) with no
separators between them. CAN data packets are fixed at 8 bytes long.

Fixed hex and fixed decimal are for non comma separated (non delimited) packets of fixed length that use ASCII
characters. Ie: decimal being 0 – 9 with leading -/+ ignored and hex being 0 – 9, A – F.

Alignment:
This determines the byte order of received channels as all dash channels are treated as 16 bit values (2 bytes).
Normal alignment is 'big endian' meaning that the most significant byte is received first, then the least
significant.

Word Swap alignment is 'little endian' meaning that the least significant byte is received first, followed by the
most significant.

Address Format:
Standard - 11 bit
Extended - 29 bit address

TNAU0031 Page 3 of 10
The address format should be specified in any protocol description, with most using Standard addressing. If base
addresses used are less than 0x7FF2 then this would indicate they are Standard length . See ‘Base Address’
below.

Base Address:
Also known as the Packet Identifier (ID), this is the ‘address’ associated with each data packet. Standard
addressing (aka CAN 2.0A) uses 11 bits (range 0x000 – 0x7FF), while extended addressing (aka CAN 2.0B)
uses 29 bits.

Transmit Rate:
If the ADL is transmitting data, this parameter sets the frequency at which this particular data packet is
transmitted. Different rates may be assigned to different packets – ie: transmitted data with another base address.
Higher priority packets can be transmitted more often reducing collisions on the data bus.

Receive Timeout:
Receive timeout is how long the dash will wait before populating a received channel with its default value.

For example, if the dash is configured to receive the engine temp channel via RS232 and this channel has a
default value of 80 degrees, with receive timeout set to 1000 milliseconds. If no data is received on RS232 for
1000+ milliseconds, the engine temp channel will read 80 degrees (until data starts coming in on RS232 again).

Template
Comms configurations can be saved as files on a pc, copied and/or loaded into other configurations.

Diagnostic Channel
If there is a problem (eg: no data) then assigning a diagnostic channel can assist the user in determining the
nature of the problem. A list of error codes can be found at the end of this document.

Message Type
Single or Compound – applies to both RS232 and CAN, though not often seen with RS232 data. Compound
messaging is explained in more detail below. See also the document “PSAU0006 Compound Data Format”.

Received Channels – Single Message

Fig 2: Single Message Type Received Channel Setup

2 The notation ‘0x7FF’ is used to indicate that the number after the ‘0x’ is hexadecimal

TNAU0031 Page 4 of 10

Up to 8 bytes of information is transmitted in each CAN data packet. Received channels are ‘Added’ to the
template by selecting them from the list of available channels. Required information for each channel is it’s
position (Offset) in the packet, Length in bytes and channel scaling , or ‘units/bit’. See below for a description of
the parameters in the Change Comms Channel dialog.

Received Channels – Compound Message

Fig 3: Received Channel Setup for the BR2 CAN template

Compound Messaging and Alignment
Each CAN packet includes 8 bytes of data. Any of these bytes can be used as an additional ID to increase the
number of channels that are transmitted using one base address. While it is possible to use 2 bytes as a
compound ID, this would only reduce the amount of data sent in each packet. While it is also possible to use any
of the 8 bytes as the compound ID, conventionally byte 0 is used.

In the ADL it is possible to receive data from up to six different base addresses – making a total of 6x8 = 48
bytes of data.

Each of the 6 base addresses can have up to 6 compound id’s within it, leaving 7 bytes of data per packet, but
increasing the amount of possible data to 6x6x7 = 252 bytes.

Note: if a channel is only received on one of the compound id’s, then its update rate will be less than if it was
received on more than compound message, or on a non-compound message.

TNAU0031 Page 5 of 10

Fig 4: Setup for Compound Message id’s
Offset
The byte position in the data packet that is being used as the compound identifier. This can be any of the bytes
from 0 – 7, with 0 (the first byte) most commonly used.

Identifier
This is the hexadecimal value of the compound id that has been assigned to this group of channels/packet. Note
that this is not related to the Base Address. When using a single byte id, it can have any (arbitrary) value between
0x00 and 0xFF. See Appendix D for a conversion table between decimal and hexadecimal.

Identifier Mask
Typically we are only using one byte as an identifier, while the ADL will automatically takes two bytes from a
packet.3 The Identifier Mask is used to ‘screen’ out one of the bytes as will often contain channel data.4 This is
achieved by performing a bitwise AND operation on the received data and the Identifier Mask. (see example
below) See Appendix A for a description of the bitwise AND operation.

Alignment
The example below demonstrates the difference between ‘Normal’ and ‘Word Swap’ Alignment in regard to
Compound Id’s.

Byte Position/Offset 0 1 2 3 4 5 6 7
Normal Alignment
(big endian)

Comp ID Ch1 HB Ch1 LB Ch2 HB Ch2 LB Ch3 HB Ch3 LB Unused

Word Swap
(little endian)

Comp ID Ch1 LB Ch1 HB Ch2 LB Ch2 HB Ch3 LB Ch3 HB Unused

data 01 xx yy -- -- -- -- --

Fig 5: Example CAN data packet

Ch1 LB: Low data byte (least significant) of channel 1
Ch1 HB: High data byte (most significant) of channel 1, and so on for Channel’s 2 and 3
xx and yy represent the data bytes for Channel 1

As all channels in the ADL are treated as 16 bit values, it will grab the first 2 bytes to check for the compound
id, but we only wish to look at the first byte. The ID and ID Mask parameters allow us to do this. Both
parameters are given as hex (base 16) values.

For the above example we have:

Alignment: Normal

Offset = 0 With an offset of 0, we are using the first byte in the packet (byte 0) as the compound

identifier. This instructs the dash to take the first 2 bytes and read them as: 01xx

3 All channels are treated as 16 bit values (2 bytes) for any calculations
4 Without this, it is unlikely that the channel data would match the Identifier specified and few (if any) valid
packets would be received

TNAU0031 Page 6 of 10
ID = 0100 01 is the id associated with the channels listed, while 00 indicates that we are ignoring the

other byte. (Note that it is possible to have an id of 00)

ID Mask = FF00 The ID Mask is ‘bitwise anded’5 with the data before being matched against the ID. The result

here is that the ‘FF’ passes the first (high) byte, while the ‘00’ clears any data (the ‘xx’ or Ch1
LB) setting it to ‘00’ to match the 00 in the ID above.

Alignment: Word Swap

Offset = 0 Again we are using the first byte in the packet as the compound id, but this time the ADL takes

the first two bytes and reads them as: xx01 – hence the name ‘word swap’

ID = 0001 The first byte is 00 indicating we will be ignoring this, while the second byte is 01 to match the

id we are looking for.

ID Mask = 00FF The ‘00’ will clear any data (Ch1 HB) setting the value to ‘00’.
 The ‘FF’ passes the other byte unchanged for comparison with the ID

Change Comms Channel
Applies to both Single and Compound Message Types

Once the format of the data is determined, channels can be assigned to the incoming data. When a channel is
added using the ‘Add’ button, or then modified by using ‘Change’ a dialog appears with the following
parameters.

Channel: The received channel is selected from the master channel list.

Default Value: If there is an interruption to the datastream, or no data at all, then this is the channel value that
will be used.

Offset: The ‘distance’ in bytes from the start of the data packet to the start of the channel. The first byte has an
offset of zero.

Length: The length of the channel in bytes. All channels used in the ADL have a length of 2 bytes (except for
error and status channels). A channel from another device that is only one byte long can be received and put into
a 2 byte channel.

Channel Scaling:
The next parameters are used to scale the incoming ‘raw’ data so that it fits into the units and resolution of the
ADL channel. The scaling is applied in the order: multiplier, divisor, then adder.

Multiplier: The raw data is multiplied by this value,

Divisor: Then divided by this value,

Adder: Then has this number added to it (can be negative).

NOTE: After this, the resulting figure is assigned to the channel selected. This will determine where the decimal
point is placed. Up to this point the data is an integer value, it is only after the scaling is applied that the value is
treated as having a decimal place (if any). Note that this is determined by the resolution of the channel and will
affect the parameter values used.

For example: The base units of rpm in the ADL are Hertz, with a resolution of 0.1
An ECU might transmit Engine RPM in rpm with a resolution of 1 rpm.
1 Hz = 60 rpm, so to convert rpm to Hz divide by 60.

But, the channel resolution is 0.1Hz so the decimal place will be inserted one place in from the least significant
digit. This means we need to multiply the data by 10. The result is a Multiplier of 10 and a Divisor of 60 (this
can be reduced to a Multiplier of 1 and a Divisor of 6).

5 see Appendix A

TNAU0031 Page 7 of 10

Bit Mask: This works the same way as the ‘Bit And’ function in ADL Channel Maths. Used to ‘screen’ the data
so that only one (usually, though can be more in any combination) bits are captured

Signed: This is checked if the received channel uses the MSB (most significant bit) to indicate that the value is
negative. A 2’s complement system is assumed (see Appendix B)

TNAU0031 Page 8 of 10

Comms Error Codes
The "Comms CAN * Diagnostic" and "Comms RS232 Diagnostic" channels can take the following values:

0 OK
1 PARITY
2 FRAMING
4 NOISE
8 OVERRUN
512 NO_DATA
1024 CHKSUM
4096 BUS_WARN
8192 BUS_OFF

Multiple errors are shown by error codes added together.
eg: 6 = noise + framing

FRAMING - the baud rate is probably wrong (or there is noise) as invalid RS232 data is being received

PARITY - the comms setup is wrong, or there is noise

NOISE - there is probably some noise

NO_DATA - a valid message header has not been found - either there is a wiring fault or comms is setup
incorrectly (could be either end)

CHECKSUM - a valid message header has been found, but the checksum was wrong. If seen in combination
with other errors there is noise. If only checksum errors occur there may be a software incompatibility between
the ADL and the other device

BUS_WARN - there has been more than 96 errors on the CAN bus. Check wiring and termination resistors. The
CAN bus may still be operational.

BUS_OFF - there have been more than 255 errors on the CAN bus. CAN communication is suspended when this
error occurs. Check wiring and termination resistors. Check the CAN baud rate. Check CAN HI and CAN LO
are correct (not swapped).

Unload comms errors:
(Errors that can occur when unloading log data from the ADL)

01h = timeout
02h = checksum
04h = framing error
08h = overrun
10h = min_char (not enough characters received by timeout)

TNAU0031 Page 9 of 10

Appendix A – Bitwise AND Operation
The results of a logical AND operation can be seen in the following ‘truth’ table.

In other words; 0 AND 0 = 0
 1 AND 0 = 0 (0 AND 1 = 0)
 1 AND 1 = 1

This operation takes two sixteen bit numbers and ‘lines them up’, then performs an AND operation between bits
in the same position. Ie: most significant bit with most significant bit down to LSB and LSB.

For example:

 1010 1100
AND 1011 0111
 = 1010 0100

For the purposes of identifier masking, ‘any value’ AND 0 becomes 0 (clearing any data), while ‘any value’
AND 1 remains unchanged. (In binary ‘any value’ is either 1 or 0)

Appendix B – 2’s Complement Numbering
There are two main methods used for specifying negative numbers in binary systems.

One way of doing this would be to say that if the MSB6 has been set (ie: = 1), then the number is negative. Ie:
instead of having a numerical weighting, this bit indicates the sign of the number, positive if 0, negative if 1.

The 2’s complement system is slightly different. If the MSB has been set, then the weighting (or value) of this
bit is subtracted from the rest of the number. As its value is always greater than the rest of the bits combined any
number with the MSB set will be negative.

Using a four bit binary number as an example, ie: numbers from 0000 – 1111
The value of the MSB in decimal is ‘8’ so in the 2’s complement system this is read as ‘-8’.
This gives us a range of values from ‘-8’ (1000) to ‘7’ (0111).
For example: the number 1001 = -7 as it consists of ‘-8 + 1’.

For 16 bit calculations in the ADL, the MSB has a value of 32768, which is –32768 in 2’s complement. This
gives us a range of –32768 to 32767 for channel values in the ADL (ignoring the decimal place).

Appendix C – Bits and Bytes
Binary data consists of single ‘bits’ of information that have a value of either 0 or 1. In computer systems single
bits are grouped together, either to represent characters or other information such as numbers (data).

A group of 8 bits makes one byte. The MoTeC ADL uses 16 bit channels, in other words, each channel is two
bytes long.7

A byte can also be divided into 2 ‘nibbles’ of four bits each. This is convenient as a four bit nibble can be
represented by one digit in the hexadecimal numbering system.

This system is used in the setup of communications parameters when entering Compound Id’s and Identifier
Masks.

6 Most Significant Bit
7 Except for error channels, which are 1 byte long

inputs 0 1
0 0 0
1 0 1

TNAU0031 Page 10 of 10
Appendix D - Decimal Binary Hexadecimal Conversion

Decimal Binary Hex
0 0 (0000) 0
1 1 (0001) 1
2 10 (0010) 2
3 11 (0011) 3
4 100 (0100) 4
5 101 (0101) 5
6 110 (0110) 6
7 111 (0111) 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F
16 0001 0000 10
17 0001 0001 11

