
Technical Note
Document Number DTN0009
Title Creating an i2 Math Plugin
Approved By AN
Revision Date Prepared By Change History

1.1 23/6/2006 JA
1.2 18/08/2014 PC Note added on action to take if plugin does not appear

© Copyright – MoTeC Pty Ltd Page 1 of 4
Reproduction in whole or in part is prohibited without written approval from MoTeC Pty Ltd.

Introduction
MoTeC’s new i2 application sets a new standard in data analysis. Included within i2 Pro is an
extensible maths engine that lets you manipulate your data with a large number of built in maths
functions.

To further extend the data analysis capability of i2, MoTeC have provided a user plugin system. This
allows a user to export whole channels from i2, then perform calculations within an external
program, eg: one written in VB.net. The results of any calculations can be output to external files or
even sent back into i2 as a new channel for analysis.

How to use the Plugin system with i2 Pro
This document should be read after reading MoTeC Technical Note “DTN0008 Creating an i2 Math
Function” as many of the concepts and methods are explained in detail there first.

Provided with i2 Pro is a sample file with examples of a few of the many features available within
the i2 plugin system. This sample file can be found in the directory:

“C:\Program Files\MoTeC\i2\1.0\Samples\Maths\Plugins\VB.NET\MyPlugins”

If you open the “MyPlugins.sln” solution file you will find the sample application, “Simple.vb”. Read
through this program for a feel for how plugins work, then build the application to make it available
within i2. This plugin is used to create a channel that consists of a sine wave with a frequency
selected by the user.

After a plugin has been built, it needs to be installed in i2 by going into the maths editor, and
selecting “Add Plugin”. From here you can select from all built plugins in the system. In this case you
should see “MyPlugins.Simple”, select this and click on OK.

Note: If a built plugin does not appear, verify that i2 is running with administrator permissions (in
some cases Windows User Account Control must also be disabled). Also ensure that the plugin dll
file that you want to install is located in the same folder as Interop.i2.dll.

Upon adding, a properties box opens up, and you can set the options that you want the user to
define for your plugin. In this example, there is a comment area, a tick box to say if you want to
generate the sine wave or not and the sine wave frequency.

simple plugin dialog

MoTeC Pty Ltd DTN0009 Creating an i2 Math Plugin

 Page 2 of 4

Then when the maths window is closed, the plugin will run. A number of dialogs will open up with
details that the plugin has grabbed from the current main log file details. Then several new
channels will be available, including ‘Simple sine Wave’.

Create your own Plugin.
In this example we will create a new plugin that is going to write an output file of shock travel data
from i2 to a text file that can be sent to your damper dyno to simulate the race or event. The input
to this will be a damper channel. Within VB we will add to the damper position array a sample time
so that the damper dyno can work out how fast to change position. The output will be damper
position to 3 decimal places, then time in seconds to 3 decimal places, then a new line. There will
be one row per sample point in the selected file.

‘outfile‘ code

Here is the first page of the damper dyno output plugin that called outfile. To start this file, copy the
provided Plugin sample file, Simple.VB to a new class called outfile.vb. Follow the process used in
the functions example to change all references of simple.vb to outfile, and used the GUIDGEN
application to create unique GUIDs for this plugin.

You can see above that much of the original settings page as provided in the sample remains, as
much is still used here. The “m_sine_generate”, “frequency”, and “sample rate” are not used, the
the m_comment is used as the source for the channel name of the damper for the output file. The
default values can be set in the ‘New’ subroutine. The definitions of the plugin interface variables
are set just below this. Further below that is the setup of the channel/channels to be received from
i2. Here you define the number of channels to be received and the name of each one as it will be
referred to within VB.

MoTeC Pty Ltd DTN0009 Creating an i2 Math Plugin

 Page 3 of 4

“outputchanels” return data to i2

In the “outputchannels” section of code, we set up the channels that are going to be sent back to
i2. We need to define the output channel names and the number of outputs.

The Summary section includes a text string that indicates the purpose of this plugin.

The Settings section is run each time the plugin is called to get the values from the settings panel
used within the plugin. The Set goes and retrieves the value of m_Comment as defined by the user
in the settings dialog box.

The “ShowSettings” area is used to define the values to be displayed by default in the settings
screen, then display the screen and assign the returned values to the m_ variables. This section
refers to the “Simpleprops” design and code which gets all the settings for your plugin. You could
use the “Simpleprops” as your settings box, and modify the screen, its layout, inputs and outputs
here for your application. This same box is used in the sample “Simple.vb” plugin, so in reality, it
would probably be best to build for yourself another input box to suit your new application.

MoTeC Pty Ltd DTN0009 Creating an i2 Math Plugin

 Page 4 of 4

Register

In the Register section we set up the detailed channel properties for any channel that we are
sending back into i2. We need to set the channel name, the type of channel, its units, colour,
number of decimal places, the interpolation settings and the scaling settings. This must be done for
each channel that we intend to send back to i2.

The Execute section, as per the Functions example, is where you actually code the Plugin. In this
example we are retrieving the “DamperPos” values then writing them out to the local file one at a
time. We are formatting the output values with a ‘ToString’ function that rounds the values to 3
decimal places (F3) in the output file. Down the bottom of the Subroutine, we are also outputting
the “DamperPos” channel as “outfile Damper Pos” back to i2. This is useful so that within i2, you can
see which channel you have exported to the file, and what the trace looks like.

Conclusion
This is a basic example of how plugins work, more complex functions are limited only by
programming capability. Many more i2 specific functions are shown in the ‘Simple’ example plugin
discussed earlier. MoTeC’s plugin and function systems make i2’s data analysis extremely powerful
and customisation virtually limitless.

