
Document Number DTN0019
Title MoTeC Communications and Setup
Approved By JA
Revision Date Prepared By Change History

1.0 07/05/2009 DR Initial

© Copyright – MoTeC Pty Ltd Page 1 of 12
Reproduction in whole or in part is prohibited without written approval from MoTeC Pty Ltd.

Contents
Introduction ... 1
Scope ... 1
Communications Basics .. 1

RS232 .. 2
Controller Area Network (CAN) .. 2

Bits, Bytes, Binary and Hexadecimal ... 3
Bit/Byte Numbering and Offset .. 3
Channel Lengths, Signing and Decimal Places ... 3
Bit Masking ... 4
Scaling .. 4

Advanced Comms Setup ... 5
Parameters ... 5
RS232 Settings .. 7
CAN Settings .. 7
Message Type .. 7
Channel Settings .. 9

M800 ECU Comms Setup ... 9
Deciphering Comms Setup Information .. 10
Appendix 1 - Diagnostic Channels and Error Counters ... 11
Appendix 2 - ASCII Standard Character set .. 12

Introduction
This document describes how data communications works and how to setup communications to and from
MoTeC devices.

Scope
This document applies to CAN and RS232 based communications, in particular in relation to MoTeC's Data
Loggers: ADL, ADL2, ADL3 and ACL.

Communications Basics
Data is sent from one electronic device to another by serial communication. There are various protocols all
working on the principal of a voltage level representing a binary number of 0 or 1. This voltage level being
present for an amount of time represents one bit of data. Each bit of data is sent sequentially one after
another. The number of bits transferred per second is the Baud rate (bits per second - bps). Often extra time
synchronising and checksum bits are added to increase data transfer quality and noise immunity.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 2 of 12

RS232
This is a point-to-point type communication where one device transmits while the other device receives.
Each device has separate transmit (tx) and receive (rx) pins and these must be connected from one device
to the other for bi-directional communication. Both devices must be connected to a common ground. RS232
data is generally sent in a frame of 10 bits; a start bit (always '0’), 8 bits of data and a stop bit (always ‘1’).
Frame lengths can vary by the number of data bits or stop bits.

After one frame (byte) has been sent, another is sent immediately or the line sits idle. When a stream of data
(or ‘packet’) is sent, it starts with a ‘header’ identifying the beginning of the packet. The receiving device
counts from the header to determine which bits and/or bytes represent which channel.

Typical RS232 Baud rates range from 1200 to 115200 bits per second (bps).

St; Start bit, always low.

 (n); Data bits (0 to 8).

P; Parity bit. Can be odd, even or none.

Sp; Stop bit/s, always high.

IDLE; No transfers on the communication line.

[]; Optional bit.

Controller Area Network (CAN)
CAN is a bus type communication where many devices or ‘nodes’ can transmit and receive data to and from
any other node on the bus. The bus normally consists of a twisted pair of wires; CAN High and CAN Low.
Nodes are simply spliced in.

Both wires carry the same data. They are used as a twisted pair to shield each other from noise and to
improve high speed transfer.

One CAN message can be over 130 bits long and consists of a CAN address, up to 64 data bits and several
timing and checksum bits.

The CAN address is an identifier for the data sent. Each node is pre-programmed to either ignore or receive
the message at a particular address and interpret the data. The address length is either 11 bits (standard) or
29 bits (extended).

All nodes can simultaneously receive data, but only one node can send data at a time. Normally, if a node
wants to send data, it waits until the bus is idle and then begins transmission. However, if two or more nodes
are waiting to send data they could start sending at the same time. To avoid a collision the node sending the
lowest value address takes priority and continues sending. The other nodes sense this, give up sending and
wait for the bus to be idle again.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 3 of 12

Bits, Bytes, Binary and Hexadecimal
Electronic devices use binary numbers to communicate as it is easy to
differentiate between a low and high voltage level; usually 0 and 5 volt
represent 0 and 1.
When counting in binary, since each digit can only have two different
values a binary number grows long in digits very quickly making them
hard to read. They are often represented as hexadecimal (hex)
numbers, using 16 different values per digit. One hex digit represents
exactly 4 binary digits, so an 8 digit binary number can be represented
with a 2 digit hex number that is much easier to read.
To differentiate between decimal, hex and binary numbers they are
written with a preceding ‘0x’ for hex and ‘0b’ for binary, or noted with hex
or bin somewhere in the area.
A bit is simply one binary digit that has a value of 0 or 1.
A byte is an 8 digit binary number that has a value of 0 to 255 (or 0x00
to 0xFF, or 0b00000000 to 0b11111111).
The table shows binary and hexadecimal numbers against decimal
numbers.

Bit/Byte Numbering and Offset
Within a string of data each byte is given a number and so is each bit in the byte. MoTeC’s numbering
system starts at ‘0’ for bits and bytes. The first data byte in a string is ‘Offset 0’. In a CAN message this is the
first byte of the data field, in a RS232 packet this is the first byte after the header. For Delimited format the
data after the header but before the first delimiter is ‘Variable 0’ (see Data Formats).

Bytes are sent most significant bit first in CAN and least significant bit first in RS232.

CAN Bit # 76543210 76543210 76543210 76543210 76543210 76543210 76543210 76543210

Byte Offset # 0 1 2 3 4 5 6 7

Time of bit 7 0 µs +8 µs +16 µs +24 µs +32 µs +40 µs +48 µs +56 µs

Example of one CAN data field. Bits are transmitted / received reading from left to right at 1 Mbps.

Channel Lengths, Signing and Decimal Places
Channels can have varying lengths of data bits, which is the amount of space they occupy in memory. Most
channels in MoTeC loggers are 16 bits in length, but where high resolution or very large numbers are
needed, they can be 32 bits long, e.g. GPS lateral and longitudinal, or Device Up Time.

16 bit channels have 65536 possible different values.

32 bit channels have 4294967296 possible different values.

Only positive integers can exist in a data stream. Representation of fractional numbers is done by placing a
decimal point in the appropriate place at the user's end. Negative numbers are represented by calling the
channel ‘Signed’. For the device, signing and decimal points do not exist; all data is treated as integers, no
decimal points. The exception being delimited decimal format where the ASCII characters ‘-‘ (minus sign)
and ‘.’ (dot/period) are read under certain conditions.

A signed 16 bit channel has a value between -32768 and 32767. If the channel has for example 2 decimal
places, the value will be between -327.68 and 327.67.

The most significant bit in a signed channel is the sign, with a value of ‘0’ for ‘+’ (positive) and ‘1’ for ‘-'
(negative).

An Unsigned 16 bit channel has a value between 0 and 65535 (0x0 and 0xFFFF).

Decimal Hex Binary
0 00 00000

1 01 00001

2 02 00010

3 03 00011

4 04 00100

5 05 00101

6 06 00110

7 07 00111

8 08 01000

9 09 01001

10 0A 01010

11 0B 01011

12 0C 01100

13 0D 01101

14 0E 01110

15 0F 01111

16 10 10000

17 11 10001

18 12 10010

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 4 of 12

Values between 0 and 32767 (or 0x0 and 0x7FFF) are equal for Signed and Unsigned channels, but for
values between 32768 and 65535 (or 0x8000 and 0xFFFF) the Signed channel equals the value of the
Unsigned channel minus 65536 (0x10000).

Note: All channels in MoTeC loggers are Signed.

Unsigned 0xFFFC 0xFFFD 0xFFFE 0xFFFF 0x0000 0x0001 0x0002 0x0003 0x0004

Signed -4 -3 -2 -1 0 1 2 3 4

Bit Masking
Bit Masking is an operation where a logical ‘AND’ is performed between two binary numbers.

For every bit in the Mask with value ‘1’, the corresponding bit of the Received Data is passed to the result. A
Mask with all bits set to '1' lets the Received Data pass unchanged and can be considered as No Mask. For
every bit in the Mask with value '0', the corresponding bit in the Received Data is passed as '0'.

This is useful if multiple statuses are combined in one channel. If for example the second bit in the received
Data contains the status that needs to be read, the mask is set to all zero except for the second bit.

Bit Masking can also be used for channels that are not whole bytes long, e.g. 4 bits (nibble), 2 bits (crumb) or
10 bits. The remaining bits of the byte, which do not belong to the channel being received, can be ignored or
‘Masked off’.

Bit Masks are defined in hexadecimal, but are here also shown in binary.

In this example for Status, the result comes through in the original bit position. This results in a channel value
of ‘0’ when the status is off and ‘64’ when the status is on. To give the correct status value of 0 or 1 the
channel divisor needs to be set to 64.

Similarly, in this example for Crumb the possible values are ‘0’, ‘8’, ‘16’ or ‘24’ and need to be divided by ‘8’
to give the correct channel value of ‘0’, '1', '2' or ‘3’.

Scaling
Data transmitted has no unit or resolution transmitted with it, it is just a number. To turn this number into
something usable it needs a unit of measurement and a resolution added after it is received. Each channel
has a base unit and resolution. If the unit or resolution of a channel transmitted differs from this base value,
the data needs to be scaled accordingly. By setting a Multiplier, Divisor and Adder, the calculations are
applied to the received data (in respective order) before loading the value into the channel. All calculations
are performed as if there were no decimal places. For example a channel value of 3.6 mm is transmitted as
the number ‘36’. If the receiving channel resolution is 0.001 mm then ‘36’ would be multiplied by ‘100’ to
equal ‘3600’ to fit the 3 decimal place channel 3.600 mm.

Channels can also be scaled before transmitting using the exact same method.

 Nibble Crumb Bit / Status No Mask 10 bit Channel

Bit Mask (hex) 0F 0C 40 FF 03 FF

Bit Mask (bin) 00001111 00001100 01000000 11111111 00000011 11111111

Received 01101101 10110110 01011011 10111001 00101101 11010001

Result 00001101 00000100 01000000 10111001 00000001 11010001

Channel 13 8 64 185 465

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 5 of 12

 Channel sent Data Multiplier Divisor Adder Channel received

Engine RPM 3379 rpm 0x0D33 1 6 0 56.3 Hz

Engine Temp 180 °F 0x00B4 5554 1000 -177 82.2 °C

Battery Volts 13.4 V 0x0086 10 1 0 13.40 V

Oil Pressure 58.24 psi 0x16C0 1000 1450 0 401.6 kPa

Air Temp *(scaled) 34 °C 0x6C 10 2 -200 34.0 °C

* Air Temp has special scaling: 1 bit = 0.5 °C, offset 20 °C, range -20 to 105 °C, 1 byte long.

Channels must always be scaled to the base units. If a different unit is required, the conversion is done in the
background when the unit is selected in Edit Channels.

Only Integers can be entered for scaling with values from -32768 to 32767.

Decimal Format also has a ‘Modulus’ setting. After all other operations, the value is divided by the modulus
and the result is the remainder. ‘0’ is no Modulus.

Advanced Comms Setup

Parameters

Device: The Device setting tells the logger what message header data or special format to expect.

The following generic types exist in CAN:

Receive Message: Receives data on the CAN address specified.

Transmit Message: Transmits channels on the CAN address specified.

Receive Message Block: Receives data in a block of 16 consecutive CAN addresses. See details
under Message Types

Async Expander: Receives an RS232 type data stream on CAN. The RS232 type needs to be
selected as well.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 6 of 12

Format:

Data can be represented as binary or ASCII. Binary is the numeric value of the byte. With ASCII the numeric
value represents a character (see Appendix 2 for the ASCII character set). This is method allows for sending
more than just numbers. MoTeC devices only read numbers and relevant symbols.

The Formats supported by MoTeC Data Loggers are:

Fixed Binary: The binary value of the byte is the channel value.

Byte Offset 0 1 2 3 4 5 6 7

Data (Hex) 0x53 0x25 0xB5 0x2F 0x45 0xFF 0x7A 0x03

Channel Value 83 37 181 47 69 255 122 3

Example shows fixed binary, channel length of ‘1’ byte.

Fixed Hex: The ASCII value of the byte as hex (0 to 9 and A to F ASCII) is the channel value.

Fixed Decimal: The ASCII value of the byte as decimal (0 to 9 ASCII) is the channel value

Byte Offset 0 1 2 3 4 5 6 7

Data (Hex) 0x31 0x41 0x32 0x30 0x46 0x43 0x37 0x35

Data (ASCII) 1 A 2 0 F C 7 5

Channel Value 1 10 2 0 15 12 7 5

Example shows Fixed Hex with channel length of ‘1’ byte. Fixed Decimal is very similar.

Delimited Hex: The ‘Variable’ is the number of delimiters after the ‘header’ data. Delimiters are ASCII
‘,’(comma) or ‘;’(semicolon). The channel value is the ASCII string as hex (0 to 9 and A to F)
between delimiters.

Delimited Decimal: The ‘Variable’ is the number of delimiters after the ‘header’ data. Delimiters are
ASCII ‘,’(comma), ‘;’(semicolon) or ‘*’ (asterisk) . The channel value is the ASCII string as decimal (0
to 9) between delimiters. Decimal point (‘.’) and minus (‘-‘) characters are also read in certain
circumstances.

Variable # 0 1 2 3

Data (Hex) 0x31 0x2C 0x39 0x31 0x2C 0x34 0x31 0x2C 0x34 0x30 0x33 0x2C

Data (ASCII) 1, 91, 41, 403,

Channel Value 1 91 41 403

Example shows delimited decimal, ASCII number followed by ‘,’ (comma) delimiter.

Fast Binary (16 bit Normal): The same as Fixed Binary except alignment is fixed as ‘Normal’ and
channel length is fixed at ‘2’ (16 bit). This uses less CPU time.

Note: With ASCII formats, any data that is not a number or specific symbol is ignored except for delimited
decimal format. If in delimited decimal format the first byte after the delimiter is invalid, all characters binary
values are read and added together until the following delimiter.

Alignment:

For channels that are longer than 8 bits, the binary number is broken into bytes. The Alignment setting
determines if the most significant byte or least significant byte is transmitted or received first.

Note: Only valid for Fixed Binary and Fixed Hex.

Normal Alignment (aka Motorola or Big Endian); The Most significant byte is sent/received first.

Word Swap Alignment (aka Intel or Little Endian); The Least significant byte is sent/received first.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 7 of 12

 Normal Word Swap

 16 bit Data Channel Offset 0 Offset 1 Offset 0 Offset 1

Binary 0b1110000100001011 0b11100001 0b00001011 0b00001011 0b11100001

Hex 0xE10B 0xE1 0x0B 0x0B 0xE1

Receive Timeout:

The receive timeout is how long the device waits for the next packet of data before changing the channel to
its default setting and flagging a no data error (512) in the comms diagnostic channel. Time is set in 1 msec
increments up to 30 seconds. The default timeout is 2200 msec.

Timeout should be set to at least 2 times the transmitted rate, e.g. Data sent at 10 Hz rate is transmitted
every 100 msec. The Timeout should be set to at least 200 msec.

Some devices send data very infrequently, e.g. once every 5 seconds requiring a Timeout of at least 10
seconds.

RS232 Settings
All settings must match the other connected device for communications to succeed.

Baud Rate: The speed at which the data is transferred.

Data Bits: Number of data bits per frame, normally 8

Stop Bits: Number of stop bits, normally 1.

Parity: Bit checksum, normally None.

Transmission Control Channel: Only transmits telemetry data when the selected channel is True.

Telemetry Settings
Most RS232 Device Types have the option to transmit telemetry as well as receive from another device, or
send telemetry only.

Limit to Modem Carrier Rate; transmits data with enough idle time as not to overflow the bandwidth of
a slower ‘carrier’ baud rate.
Streaming; normally telemetry is sent at a rate rounded to a whole number of samples per second
leaving some idle time on the line after each packet. If the Streaming box is checked the data is forced
to be sent without gaps, using 100% bandwidth.

CAN Settings
Address Format: Standard format is a 11 bit address, with values of 0x1 to 0x7FF. Extended format is
a 29 bit address, with values of 0x1 to 0x1FFFFFFF.

Base Address: The CAN address on which the data is being transmitted or received.

Transmit Rate: The number of times per second a message is transmitted (ignored for receive).

CAN Bus: The physical bus on which the message is transmitted (ACL and ADL3 Data loggers only).

Allow Fast Receive: The channels are updated at the same rate as the message is received, allowing
for log rates up to 1000 Hz.

Async Device: Receive RS232 type data format on CAN (Async Expander device type only).

Message Type
Single: With single message type, the position of each byte in the data string relates to the channel
assigned.

Compound: With compound message type there is a message identifier within the data section of the
message or packet. The value of the ID relates the rest of the data to a unique set of channels. This

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 8 of 12

message type allows for communicating a large number of channels on a single CAN address. When
transmitting a compound message the Transmit Rate is the rate at which each message is transmitted,
meaning each channel is transmitted at the Transmit Rate divided by the number of ID sets.

Compound Settings

Offset: The number of bytes after the header or CAN address where the most significant byte of the ID
is located in the data.
ID: The value of the identifier in hex.

ID Mask: A bit mask for the ID. (See Bit Masking). Has no effect on transmit message.

Offset 0 1 2 3 4 5 6 7

Msg 0x123 ID = 0x0000 Chan 1 Chan 2 Chan 3

Msg 0x123 ID = 0x0100 Chan 4 Chan 5 Chan 6

Msg 0x123 ID = 0x0200 Chan 7 Chan 8 Chan 9

Msg 0x123 ID = 0x0300 Chan 10 Chan 11 Chan 12
Example of transmitting twelve 16 bit channels on one CAN Address

(This is the M800 ADL receive format).
When transmitting a compound message the data is written to the message after the ID. Data can
therefore be written over the ID. Care must be taken not to do this, which is as easy as not transmitting
data on the same offset as the ID.
Often a two byte identifier is not needed. In this case, one of the two bytes can be overwritten with data.
This will work as long as there is still at least one identifying marker in one byte with the receiving end
configured to read only this byte.

Alignment settings do not affect the identifier; it is always transmitted as Normal - most significant byte
first.

Receive Message Block Device Type Setup

Receive Message Block uses the compound ID setup to define which message of the block relate to
which set of channels. The Identifiers Offset must all be set to ‘8’, and Identifiers Bit Mask all set to
‘FFFF’. The Identifiers ID contains the CAN Address of each message to be received in the block, and
must be in the range of ‘Base Address’ to ‘Base Address + 0xF’. For each Compound ID, channels are
selected the same as if it were a Single Message.

Receive Message Block, base address 0x300

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 9 of 12

Channel Settings
Default Value: Channel value when comms is in error (Diag is not ‘0’)

Offset: The Byte number in the data stream the first byte of the channel occurs.
CAN messages - ‘0’ to ‘7’ are valid.
Single type RS232 packet - ‘0’ to ‘255’ is valid.
Compound Type RS232 packet - ‘0’ to ‘15’ is valid.
Variable: Delimited format only. Specifies how many delimiters through the packet the channel occurs.
Delimited Hex - ‘0’ to ‘30’ is valid.
Delimited Decimal - ‘0’ to ‘70’ is valid.
Length: The number of bytes long to be received as one channel.
Fixed binary format ‘1’, ‘2’ or ‘4’ bytes are valid. (‘4’ not valid for ADL2)
Fixed Hex/Decimal format ‘1’ to ‘16’ bytes is valid.
Delimited format length is between delimiters, not applicable.

Decimal Format: For Delimited Decimal format only. Specifies the resolution of the received data by
reading the decimal point character in the ASCII string. Used if trailing zeros are omitted from the string.
‘As Received’ ignores the decimal point from the ASCII string.

Bit Mask: Binary Bits to logically ‘AND’ with the received channel. See Bit Masking section.

Signed Checkbox: Defines whether the channel is Signed or Unsigned. See Channel Lengths, Signing
and Decimal Places Section.

Multiplier, Divisor and Adder: After the data has been received and bit masked, it is multiplied, divided
and added in this order. This operation allows the data to be scaled if sent in a different unit and
resolution to the base units and resolution of the assigned channel. See Scaling

Receive Message Fixed Binary, Engine RPM from M800 ECU. Note Base
 resolution 0.1 Hz, requires divide by 6 to convert from rpm 0dp to Hz 1dp

M800 ECU Comms Setup
The hundred series ECUs offer a low level of customisable communication. Predefined data sets and two
custom data sets can be transmitted on CAN and RS232. Only predefined CAN templates can be received,
which includes templates for all CAN-based MoTeC products, and NMEA GPS information on RS232.

Custom Data Sets
There are two custom data sets where a list of channels to be transmitted can be selected. Up to 64
channels can be selected per set. The ‘Export Comms template’ feature creates CAN templates of the
custom data set that appear in the templates list of the selected devices. These templates require the
custom data set to be transmitted from the M800 in the ‘CRC32’ format on a CAN Address of ‘1520’.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 10 of 12

CAN Setup
Within the CAN setup parameters there are 7 sections, CAN 0 to CAN 6. Different data can be received and
transmitted for these sections in a fixed format.

Custom data sets can be transmitted in three different fixed formats: Compound, Sequential, or CRC32.

Compound format transmits each group of 3 channels in custom data set item number order with an
identifier at the start of each message. Transmitted on the CAN address specified until all channels are sent
before repeating at the transmit rate defined.

Offset 0 1 2 3 4 5 6 7

CAN Address 0x0000 Item 1 Item 2 Item 3

CAN Address 0x0100 Item 4 Item 5 Item 6

CAN Address 0x0200 Item 7 Item 8 Item 9

Example of transmitting 9 channels in compound format

Sequential format transmits each group of 4 channels in custom data set item number order on a
sequentially incremented CAN address starting at the address specified. Up to 16 CAN addresses can be
used for 64 channels, transmitted at the rate specified.

Offset 0 1 2 3 4 5 6 7

CAN Address Item 1 Item 2 Item 3 Item 4

CAN Address + 1 Item 5 Item 6 Item 7 Item 8

CAN Address + 2 Item 9 Item 10 Item 11 Item 12

Example of transmitting 12 channels in sequential format

CRC32 format transmits all channels in the MoTeC CRC32 format. This is an RS232 type format, beginning
with a header and ending with a CRC32 32bit checksum. Data packet is sent on the CAN address specified.
This format is used when transmitting custom data sets on telemetry (RS232).

Offset 0 1 2 3 4 5 6 7

CAN Address 0x82 0x81 0x80 Length Item 1 Item 2

CAN Address Item 3 Item 4 Item 5 Item 6

CAN Address Item 7 Item 8 CRC 3 CRC 2 CRC 1 CRC 0

Example of transmitting 8 channels in CRC32 format

Deciphering Comms Setup Information
There is no consistency in terminology and numbering regarding Comms setup information. Differences can
be many and varying. Sometimes trial and error is needed if information is limited and some common sense
is required to decode the information to write a MoTeC template.

For example:

Byte and/or bit numbering can start at '1' instead of ‘0’ or the offset is in bits only, not bytes.

Scaling information can be presented in different ways: '0.125 units per bit' and '800 counts equals
100 units' represent the same scaling.

CAN Address can be called an ID. Compound ID can be called a Multiplexor.

The list goes on.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 11 of 12

Appendix 1 - Diagnostic Channels and Error Counters
Diagnostic channels are used to display any error reported by the communications hardware.

The error codes are as follows:

0 No comm errors, receiving or transmitting data correctly.

RS232 hardware/comms errors
1 Parity is wrong
2 Framing error, no stop bit detected. Wrong baud rate, wrong number of bits or noise.
4 Noise, a glitch in data, probably caused by noise
8 Overrun, hardware issue.

General comms protocol errors
256 Bad Config, Invalid comms setting.
512 No data received before the ‘Timeout’ expired.
1024 Checksum error, comms protocol error.
2048 Wrong data, Check wiring.

CAN Bus Errors
4096 Bus Warning. Error counter is over 96 errors but bus may still function. Check wiring, terminating

resistors and baud rate.
8192 Bus Off. Error counter is over 255, node switched off. Check wiring, terminating resistors and baud

rate.
16384 CAN transmit warning. Check wiring, terminating resistors and baud rate.

CAN Error Counter channels (ACL V1.4 and ADL3 only) are linked to the CAN hardware, counting up for
every incorrectly received or transmitted message, and counting down for every correctly received or
transmitted message. The range is 0 to 255.

MoTeC Pty Ltd DTN00019 MoTeC Communications and Setup

 Page 12 of 12

Appendix 2 - ASCII Standard Character set
Char Dec Hex Description Char Dec Hex Description

NUL 0 0 Null character @ 64 40 At-sign
SOH 1 1 Start of heading A 65 41 Uppercase A
STX 2 2 Start of text B 66 42 Uppercase B
ETX 3 3 End of text C 67 43 Uppercase C
EOT 4 4 End of transmission D 68 44 Uppercase D
ENQ 5 5 Enquiry, goes with ACK E 69 45 Uppercase E
ACK 6 6 Acknowledge F 70 46 Uppercase F
BEL 7 7 Bell G 71 47 Uppercase G
BS 8 8 Backspace H 72 48 Uppercase H
HT 9 9 Horizontal tab I 73 49 Uppercase I
LF 10 A Line Feed J 74 4A Uppercase J
VT 11 B Vertical tab K 75 4B Uppercase K
FF 12 C Form Feed L 76 4C Uppercase L
CR 13 D Carriage Return M 77 4D Uppercase M
SO 14 E Shift Out N 78 4E Uppercase N
SI 15 F Shift In O 79 4F Uppercase O
DLE 16 10 Data link escape P 80 50 Uppercase P
DC1 17 11 XON, with XOFF to pause listings Q 81 51 Uppercase Q
DC2 18 12 Device control 2 R 82 52 Uppercase R
DC3 19 13 XOFF, with XON is TERM S 83 53 Uppercase S
DC4 20 14 Device control 4 T 84 54 Uppercase T
NAK 21 15 Negative acknowledge U 85 55 Uppercase U
SYN 22 16 Synchronous idle V 86 56 Uppercase V
ETB 23 17 End transmission block W 87 57 Uppercase W
CAN 24 17 Cancel line X 88 58 Uppercase X
EM 25 19 End of medium Y 89 59 Uppercase Y
SUB 26 1A Substitute Z 90 5A Uppercase Z
ESC 27 1B Escape [91 5B Opening square bracket
FS 28 1C File separator \ 92 5C Reverse slant (Backslash)
GS 29 1D Group separator] 93 5D Closing square bracket
RS 30 1E Record separator ^ 94 5E Caret (Circumflex)
US 31 1F Unit separator _ 95 5F Underscore
SP 32 20 Space ` 96 60 Opening single quote
! 33 21 Exclamation mark a 97 61 Lowercase a
" 34 22 Quotation mark b 98 62 Lowercase b
35 23 Cross hatch (number sign) c 99 63 Lowercase c
$ 36 24 Dollar sign d 100 64 Lowercase d
% 37 25 Percent sign e 101 65 Lowercase e
& 38 26 Ampersand f 102 66 Lowercase f
` 39 27 Closing single quote (apostrophe) g 103 67 Lowercase g
(40 28 Opening parentheses h 104 68 Lowercase h
) 41 29 Closing parentheses i 105 69 Lowercase i
* 42 2A Asterisk (star, multiply) j 106 6A Lowercase j
+ 43 2B Plus k 107 6b Lowercase k
, 44 2C Comma l 108 6C Lowercase l
- 45 2D Hyphen, dash, minus m 109 6D Lowercase m
. 46 2E Period n 110 6E Lowercase n
/ 47 2F Slant (forward slash, divide) o 111 6F Lowercase o
0 48 30 Zero p 112 70 Lowercase p
1 49 31 One q 113 71 Lowercase q
2 50 32 Two r 114 72 Lowercase r
3 51 33 Three s 115 73 Lowercase s
4 52 34 Four t 116 74 Lowercase t
5 53 35 Five u 117 75 Lowercase u
6 54 36 Six v 118 76 Lowercase v
7 55 37 Seven w 119 77 Lowercase w
8 56 38 Eight x 120 78 Lowercase x
9 57 39 Nine y 121 79 Lowercase y
: 58 3A Colon z 122 7A Lowercase z
; 59 3B Semicolon { 123 7B Opening curly brace
< 60 3C Less than sign | 124 7C Vertical line
= 61 3D Equals sign } 125 7D Closing curly brace
> 62 3E Greater than sign ~ 126 7E Tilde (approximate)
? 63 3F Question mark DEL 127 7F Delete (rubout), cross-hatch box

